

Replacing Your Proprietary Scale-out NAS With GlusterFS

Jacob Shucart SA, Red Hat January 2012

Agenda

- Introduction
- Technology overview
 - High-level overview of what an implementation looks like
 - Understand the data flow
- Demonstration
- Q&A

Technology Overview -Queue the marketing slides

What is GlusterFS?

Scale-out storage software for

- Unstructured / file data
- Objects
- Big data

Scalable

- Scales linearly and non-disruptively
- Performance
- Capacity
- Petabytes and beyond

Flexible

- Deploy anywhere
- Data center/private cloud
- Public cloud
- Hybrid cloud
- Multi-tenancy
- High Availability

Affordable

Deploys on commodity hardware

Use Case: Data Center / Private Cloud

Red Hat Storage Software Appliance

- Global namespace can span geographical distance
- GlusterFS file system
- Aggregates CPU, memory, network, capacity
- Deploys on Red Hat certified servers and underlying storage: DAS, JBOD.
- Scale-out linearly; performance and capacity as needed
- Replicate Synchronously and Asynchronously for high availability

Providing Access to Your Data

- GlusterFS enables you to create a Global Namespace
- On that namespace you can create volumes where data resides
- Clients access data from the volumes
- GlusterFS handles all volume-level policies
 - Distribute
 - Replicate
 - Geo-Rep
 - And more...

Gluster FS Handles Everything Else From There

- Any GlusterFS node can handle client requests
- GlusterFS handles distributing, replicating, and remotely replicating the data
- Clients perceive volumes as being one share that they can read and write the data
- Everything that GlusterFS does behind that is transparent to the client

How Does GlusterFS Work Without Metadata?

- All storage nodes have an algorithm built-in
- All native clients have an algorithm built-in
- Files are placed on a brick(s) in the cluster based on a calculation
- Files can then be retrieved based on the same calculation
- For non-native clients, the server handles retrieval and placement

Gluster Technical Fundamentals

A Brick

- A brick is the combination of a node and a file system. hostname:/dir
- Each brick inherits limits of the underlying filesystem(ext3/ext4/xfs)
- No limit to the number bricks per node.
- Gluster operates at the brick level, not at the node level.
- Ideally each brick in a cluster should be the same size.

A Gluster cluster with 12 bricks.

Volumes

- A volume is some number of bricks => 2, clustered and exported with Gluster.
 - Volumes have administrator assigned names.
 - Volume name = export name.
 - A brick is a member of only one volume.
- A Gluster namespace can have 1 or more volumes.
 - A Gluster namespace can have a mix of replicated and distributed volumes.
 - Data in different volumes physically exists on different bricks.
 - Volumes can be sub-mounted on clients using NFS, CIFS and/or GlusterFS clients.
- The directory structure of the volume exists on every brick in the volume.

Volume Types

- Distribute
 - No data redundancy
 - Failure of a brick results in data access issues
- Replicate(or distribute + replicate)
 - Redundant at the brick level through synchronous writes
 - High availability
 - N replicas are supported
- Stripe(or distribute + stripe)
 - Limited use case(scratch space, very large files, some HPC)
 - Problems with small files

Gluster Technical Fundamentals

GlusterFS Native client data flow

Gluster Technical Fundamentals

NFS, CIFS dataflow

HA for NFS and CIFS

Any IP failover tool can work for NFS

- Appliance based load balancers with heartbeat such as F5
- Linux heartbeat, ucarp, CTDB
- Not all failover works for CIFS as that requires some session handling

CTDB is what we use

- It is very simple to configure
- Works for NFS
- Works for CIFS
- Is very robust and configurable

Round robin DNS for load balancing

- You can use any load balancer you want
- RRDNS is simple to configure and works well
- Prevents hot spots of activity

Sizing and Architecture

Gluster performance relies on hardware

- Number of systems depends on performance and capacity
- There are many ways to meet customer needs
- 2U & 4U DAS systems and JBODS are great building blocks

Capacity-centric environments

- 2U & 4U DAS systems with multiple JBODS
- Lower RAM and CPU requirements
- Lower network requirements

Solution State Activity And Performance Environments

- 2U & 4U DAS systems with 1-2 JBODS max
- Higher RAM and CPU requirements
- Low to high network requirements

High performance environments

- 1U or 2U systems with no JBODS
- Highest RAM and CPU requirements
- Fast disks and fast network

Checking System Requirements

Red Hat SSA 3.2 Configuration Guidelines

Document link: <u>https://access.redhat.com/kb/docs/DOC-66207</u>

Client Dependency Packages

- Install required prerequisites on the client using the following command:
 \$ sudo yum -y install openssh-server wget fuse fuse-libs openib libibverbs
- For Infiniband support, install **openib** and **libibverbs** packages.
- Portmapper for NFS

Gluster Packages

- <u>http://download.gluster.com/pub/gluster/glusterfs/3.2/LATEST/</u>
- glusterfs-core and glusterfs-fuse are required for Gluster Native Client
- glusterfs-geo-replication if you are using geo-replication
- glusterfs-rdma for Infiniband

Demonstration

Q&A and THANK YOU

Jacob Shucart jshucart@redhat.com